
The Difference Between
Format-Preserving Encryption
and Tokenization

Format-preserving encryption (FPE) and tokenization have similar objectives,
but the difference between the two can be confusing at times.

This fact sheet provides a brief overview of both the similarities and differences
between these two data-centric security methods and provides examples of
when one method might be used instead of the other.

cf_tokenization<>FPA_WEB.qxp_Layout 1 18.07.19 11:06 Seite 1

Protection of sensitive data
In the broadest sense, both tokenization and FPE are data security tools that focus on pro-
tecting sensitive data, such as primary account numbers (PANs) or personally identifiable infor-
mation (PII), from theft or exposure. This is done to minimize the effects of data breaches and
to achieve compliance with key requirements of data privacy laws such as GDPR and CCPA or
with industry standards such as PCI DSS.

Data-centric security
FPE and tokenization also share the same “data-centric” approach to security, meaning data
is protected at the element or field level, rather than protecting whole files, data-bases, cloud
instances, or storage resources. Given the almost inevitability of breaches and accidental expo-
sure, data-centric security protects the data itself so that it’s still protected in case of theft, loss,
or unauthorized access.

Referential Integrity
Another similarity is that both techniques maintain “referential integrity” meaning that the
protected data and the source data have a one-to-one relationship. The analytic value of the
source data is maintained by the protected data which is especially advantageous for big data
analytics and similar initiatives where data is shared. This feature allows data to stay protected
for more than 90% of its lifespan with a mantra of “protect once, unprotect sparingly.”

Reversible anonymization
FPE and tokenization are also a form of reversible anonymization (also referred to as pseudo-
anonymization) meaning that the protected data can be selectively unprotected at certain
points where the source data is absolutely required, such as credit card settlement, submitting
government forms with ID numbers, EFT transactions, and the like. If need be, implementation
strategies can be used to make both technologies irreversible.

Stateful or stateless implementation
Both technologies can be implemented in either a stateful or stateless approach. Stateful
means that a database is used to track encryption keys or tokens that have been generated
and used. This database must be shared (replicated) and will increase in size as more keys or
tokens are generated. Stateless means that an algorithm is used to generate a static table of
highly randomized values (typically something called an unbalanced Feistel network) that is
used to derive encryption keys or tokens. This table does not grow in size or change, which
alleviates the scaling and concurrency concerns surrounding stateful implementations, which
can be prone to failure and even data loss. In a stateless key management or tokenization
approach, any key or token that is generated at any point in time can be re-generated
(derived) again with the static table.

Similarities

Unique to tokenization
Tokenization generates random data values, commonly referred to as “tokens,” which
represent actual data. This process typically replaces sensitive data elements with non-
sensitive data elements – tokens – of no exploitable value. Tokens usually preserve the
same length, format, and composition as the original data to facilitate using tokens wit-
hout requiring database or application changes and maintaining referential integrity. To-
kens are generated by a centralized, stateless token server, so unlike FPE, there is no
encryption key that requires management or rotation.
Furthermore, since tokenization is a centralized service, the solution must be designed
with fault tolerance, scaling, and failover taken into account. Once generated, tokens
can be used indefinitely without the need to retokenize.

Unique to format-preserving encryption
Encryption uses an algorithm and a centrally-managed encryption key to encrypt the ori-
ginal data into a similarly protected form. FPE refers to encrypting data in such a way
that the output is in the same format as the original data. FPE, like any encryption opera-
tion, requires an encryption key to be delivered to the endpoint wherever encryption (or
decryption) is performed. In order to maintain referential integrity across datasets, the
same encryption key must be used everywhere a data type is found (e.g. all SSNs across
the enterprise are protected with the same key).

Since encryption key delivery is an expensive operation, keys are also typically cached for
reuse outside the protected confines of the key manager. If the encryption key were to
be obtained or guessed by an attacker, then any data protected with that key could be
potentially compromised, requiring re-encryption of data. Due to this inherent risk,
encryption keys must also be periodically rotated, typically on an annual basis at least,
which also requires re-encryption to maintain referential integrity.

Re-encryption of data can be a time-consuming and risky task which must be done secu-
rely since the data is vulnerable between the time it is decrypted with the old key and
encrypted with the new key. Also, since FPE is almost always implemented with stateless
key management, it’s impossible to destroy a key because, by definition, it can always be
derived on demand. That means that after a key rotation, any data that is not located
and re-encrypted will continue to be vulnerable.

Differences

When it comes to sensitive data, a stateless, data-centric approach is
proven to have fewer security gaps and risks, as security travels with
the data while it’s at rest, in use, and in transit, rather than relying on
additional security methods to provide protection if and when the data

leaves the application, database, or storage resource.

cf_tokenization<>FPA_WEB.qxp_Layout 1 18.07.19 11:06 Seite 3

Operational concern

Avoid re-coding applications
and re-structuring databases?

Can be implemented in a stateless fashion?

Unbreakable?

Successfully remove sensitive data?

Helps reduce overall compliance burden?

Remove or reduce the burden
of key management?

Protects data even when user/ admin
credentials are leaked?

Standards-based approach?

Tokenization

YES – the original data is replaced with a token, which
retains the format of the original data.

YES – stateless tokenization is ideal since the token server
doesn’t replicate tokens across its nodes and doesn’t store
any sensitive data ever.

YES – hackers cannot reverse engineer tokenized data (or
vice versa) as secure, random data was used to generate
the tokens.

YES – because tokenization ‘replaces’ the original data
with a token, therefore the original data no longer exists.

YES - tokenization reduces compliance scope, as compli-
ance auditing affects systems hosting sensitive data.

YES – tokens are generated by a centralized server which
doesn’t require rotation or management of encryption
keys.

YES – tokens are still usable in their protected state so
users don’t need to have access to unprotected data.

YES – the ANSI X9.119-2 standard governs the secure
generation of tokens. Not all solutions implement the
ANSI standard.

FPE

YES – the original data is encrypted and formatted in such
a way that the format of the original data is retained.

YES – stateless key management allows for any key to be
derived at any point in time and alleviates key replication
issues. Stateless keys cannot be destroyed.

NO – the systematic encoding process is reversible with
the right encryption key or brute force. Some FPE standards
have been found to be insecure.

NO – the actual data is still there, it’s just scrambled in a
reversible pattern, so technically, it’s not removed.

NO – although FPE fulfills requirements of data protection
regulations, the systems still need to be audited, thus the
burden of proof is still there.

NO – organizations need to rotate encryption keys on an
annual basis, which adds to the operational management
burden IT departments already face.

YES – as long as access to the key manager is not
compromised, data is protected.

YES – the AES-FFx standard governs FPE.
Note that currently only AES-FF1 is considered secure as
FF2 and FF3 have known vulnerabilities.

Side by Side Comparison

Tokenization has advantages over FPE
in most use cases because it reduces com-
plexity and management requirements.
Here’s quick breakdown of the differences:

Learn more about how enterprise data protection
can benefit your organization here or contact us
to discuss your data protection requirements:
www.comforte.com

Follow us on social media:

cf_tokenization<>FPA_WEB.qxp_Layout 1 18.07.19 11:06 Seite 5

https://linkedin.com/company/comforte-ag
https://youtube.com/c/comforte-ag
https://twitter.com/comForteLounge

